65 research outputs found

    All different or all the same? Exploring the diversity of professional practices in Portuguese school psychology

    Get PDF
    "Published online: 29 March 2016"Studies have generally characterized school psychologists as a relative homogenous population. Understanding the differences in professional practices and related variables is important for the development of the profession. Using a sample of 446 Portuguese school psychologists, this study used cluster analysis to identify distinct profiles of professional activity, based on practitioners’ time distribution among different target audiences (i.e.,students, parents, teachers, school board members, school non-professional staff, and other professionals within the school community). Three distinct profiles emerged from the data: a group highly oriented to work with students, a group that distributes time almost equitably between adults and students, and a group that concentrates attention and professional expertise on adults. Practice setting variables, such as school-psychologists-to-student ratio, schoolpsychologists-to-school ratio, number of referrals per year, and school community level of demand for different activities, were found to be significantly related to cluster membership. No personal- or professional-background-related variables differentiated the three groups. The main implications of these findings are discussed in light of recent literature regarding the models of service delivery for school psychologists

    Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex

    Get PDF
    The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1

    Principles of sensorimotor learning.

    Get PDF
    The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved

    Motor primitives in space and time via targeted gain modulation in cortical networks

    Get PDF
    Motor cortex (M1) exhibits a rich repertoire of activities to support the generation of complex movements. Recent network models capture many qualitative aspects of M1 dynamics, but they can generate only a few distinct movements (all of the same duration). We demonstrate that simple modulation of neuronal input–output gains in recurrent neuronal network models with fixed connectivity can dramatically reorganize neuronal activity and consequently downstream muscle outputs. We show that a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, novel movements can be assembled from previously-learned primitives and we can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.Our work was supported by grants from the Wellcome Trust (TPV and JPS WT100000, 246 GH 202111/Z/16/Z) and the Engineering and Physical Sciences Research Council (JPS)

    Morphological Diversity and Connectivity of Hippocampal Interneurons

    Get PDF
    corecore